DSpace

  Al al-Bayt
University

        AABU-Dspace

        Dspace Home
Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/555
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMohammad Mujalli Al-mahameed-
dc.date.accessioned2015-09-29T09:55:40Z-
dc.date.available2015-09-29T09:55:40Z-
dc.date.issued2003-10-20-
dc.identifier.urihttp://hdl.handle.net/123456789/555-
dc.description.abstractالملخص في هذا البحث أوجدنا أحد مبادئ القيم العظمى المعممة لأنظمة من المعادلات التفاضلية الجزئية الناقصة المتجانسة من المرتبة الثانية ذات الارتباط الضعيف. وأوجدنا كذلك شرطاً ضرورياً لمبدأ القيمة العظمى التقليدي. هذه النتائج هي تطوير لبعض النتائج حول مبادئ القيم العظمى التي وردت في المراجع المذكورة في البحث ولكن تحت شروط مختلفة. Abstract In this paper we find a generalized maximum principle for weakly coupled second order homogeneous elliptic systems Lu Au = 0 in ? ? Rn Where L [u(x)]= aij(x) ai (x) , aij = aji is a second order real elliptic operator, u=(u1, u2, ? ?, un)T, and A is an n ? ? n matrix with entries which are all complex valued functions. We also find a sufficient condition for the classical maximum principle. These results extend the result of Winter and Wong [12] for A being negative semidefinite to a more general form of A. Generalized maximum principles for weakly coupled second order elliptic systems have also been obtained by Dow [2], Hile and Protter [6], and Wasowski [11] under different conditions on the coefficients.en_US
dc.subjectGeneralized and Classical Maximum Principle For Class of Second Order Elliptic Systemsen_US
dc.subjectClassical Maximum Principleen_US
dc.subjectSecond Order Elliptic Systemsen_US
dc.subjectGeneralizeden_US
dc.titleGeneralized and Classical Maximum Principle For Class of Second Order Elliptic Systemsen_US
dc.typeOtheren_US
Appears in Collections:المجلد 12 العدد 2

Files in This Item:
File Description SizeFormat 
12215.doc127 kBMicrosoft WordView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.